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Kinetics of non-isothermal crystallization 
process and activation energy for crystal 
growth in amorphous materials 
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An equation expressing the volume fraction, x, of crystals precipitating in a glass heated 
at a constant rate, ~, was derived. When crystal particles grow m-dimensionally, x is 
expressed as 

E 
In [ - - I n ( I - - x ) ]  = - - n l n ~ - - 1 . 0 5 2 m - -  +Constant  

RT 

where E is the activation energy for crystal growth and n is a numerical factor depending 
on the nucleation process. When the nuclei formed during the heating at the constant 
rate, ~, are dominant, n is equal to m + 1, and when the nuclei formed in the previous 
heat-treatment before thermal analysis run are dominant, n is equal to m. The validity 
and usefulness of this equation was ascertained by applying it to a Li20"2SiO2 glass. 
A method for determining the values of n and m from DSC curves was proposed and it 
was concluded that the modified Ozawa-type plot is very useful and convenient to obtain 
the activation energy for crystal growth. 

1. Introduction 
Thermal analysis is a very useful tool for studying 
the kinetics of chemical reactions and crystal- 
lization of glass as it is a rapid and convenient 
means. Many authors used the so-called Kissinger 
plot [1] or Ozawa plot [2] directly to examine 
the kinetics of crystallization of amorphous 
materials. These methods, however, cannot be 
directly applied to the crystallization of amor- 
phous materials and the physical meaning of 
the activation energies thus obtained are obscure 
because the crystallization is advanced not by 
the n-th order reaction but by the nucleation and 
growth process. On the other hand, some authors 
applied the Johnson-Mehl-Avrami (JMA) 
equation to the non-isothermal crystallization 
process [3-10].  Although sometimes they appeared 
to get reasonable activation energies, this pro- 
cedure is not appropriate because the JMA 
equation was derived for isothermal crystallization 

[1~1. 

Matusita and Sakka [12-14] have proposed a 
method for analysing the non-isothermal crystal- 
lization kinetics on the basis of nucleation and 
growth process, and emphasized that the crystal- 
lization mechanism such as bulk crystallization 
or surface crystallization, should be taken into 
account for obtaining the meaningful activation 
energy. In the present study, the equation express- 
ing the non-isothermal crystallization was derived 
more rigorously than the equation reported 
previously [12-14] ,  and the method for deter- 
mining the activation energy for crystal growth 
from DSC curves of various heating rates was 
proposed. 

2. Theoretical analysis 
Usually, the rate of crystal nucleation in glass 
reaches the maximum at a temperature somewhat 
higher than the glass transition temperature and 
then decreases rapidly with increasing temper- 
ature, while the rate of  crystal growth reaches the 
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maximum at a temperature much higher than the 
temperature at which the nucleation rate is highest 
[15]. When a glass is heated at a constant rate, 
crystal nuclei are formed only at lower tem- 
peratures and crystal particles grow in size at 
higher temperatures without any increase in num- 
ber [16, 17]. 

In the case of  a quenched glass containing no 
nuclei, the number, N, of  nuclei formed per unit 
volume in the course of  heating from room tem- 
perature, ~ ,  to a temperature, T, is inversely 
proportional to the heating rate, a = dT/dt. 

f2 1 f~ No X = I(T)dt = -- I(T)dT = (1) 
r 

In the case of a glass which was heated previously 
at the temperature of  maximum nucleation rate 
for sufficiently long time, a large number of nuclei 
already exist and N is not dependent on a. 

The rate of  crystal growth, U, is expressed by 
[15] 

U = Uo exp (-- E/R T) (2) 

where E is the activation energy for crystal 
growth. The radius, r, of  a crystal particle is 
expressed as 

t 

r = fo U(T)dt =--U~ fT o~ Tr exp (-- E/R T)d T. 
(3) 

This integral cannot be expressed by an elementary 
function, and a rough approximation was made 
in previous reports [12-14] .  In the present study, 
this integral is evaluated to a closer approximation 
by using the Doyle's p-function [18, 19]. 

p(y) = ( ; .  exp (--y)yz dy. 

This function was tabulated numerically and if 
y is larger than 20, this function is expressed to 
a close approximation as [18, 19] 

logp(y)  = --2.315 --0.4567) ' .  (5) 

Rewriting the variable, y=E/RT, Equation 4 
can be rewritten as 

P(~T)= RfTo exp(--R~T) dT. 

From Equations 3, 5 and 6, 

r = -- exp 1.052 . (7) 
Ol 

When crystal particles grow three-dimensionally, 
the variation of crystal volume fraction, x, is 
expressed by 

dx (1 x)N4rrr2 dr 
dt dt (8) 

where ( 1 - x )  is the correction factor for the 
impingement of crystal particles and reduction 
of  glass phase. This factor was also used to derive 
the JMA equation [1 1]. Integration of Equation 
8 leads to - ln(1 -- x) = (47r/3)Nr 3 and replacing 
with Equation 7 leads to 

-- ln(1 -- x) = CoNcC 3 exp(--  
\ 

1.052 x 3 

(9) 

In the case of a quenched glass containing no 
nuclei, N is inversely proportional to a as is the 
case of  equation 1, this is converted to 

- I n ( l - - x )  = C o N o a - 4 e x p ( - 1 . 0 5 2 x  3 ~ T  ). 

(10) 

In more general expressions, these are expected 
a s  

- - l n ( 1 - - x )  = Kloz-nexp(--1.O52rn~T ). 
(11) 

Similarly, the variation of  crystal volume fraction 
is derived as 

d_xx = d t  K2(1--x)~-(n-1)exp(--l'O52m~)" 

(4) (1 2) 

Here, n = m + 1 for  a quenched glass conta in ing 

no nuclei  and n = m for a glass conta in ing a 
sufficiently large number of  nuclei. Also, m = 3 
for three-dimensional growth of  crystal particles, 
m = 2 for two-dimensional growth, for example, 
in a thin film glass, and m = 1 for one-dimensional 
growth, for example, in a fibre glass or surface 
crystallization. These are shown schematically in 
Fig. 1. The n-value can be obtained from the plot 

(6) of  In [ - - l n ( 1 - - x ) ]  against I n a  at a specific 
temperature. Theoretically, the maximum value of  
n is 4 and minimum value is 1, and in these cases, 
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m=3 m=2 

Figure 1 Schematic representation of the growth mechanism of crystal particles. 

the corresponding m-values must be 3 and 1, 
respectively. But when n = 2, the corresponding 
m-value is 2 or 1, and when n = 3, the correspond- 
ing m-value is 3 or 2. One way for determining 
the m-value is to observe the change of  n with 
reheating at the nucleation temperature. If n does 
not change with reheating, a large number of  
nuclei exist already in the specimen and n = rn. 
If n decreases with reheating, not so many nuclei 
exist in the specimen. In this case, rn < n < rn + 1 
before reheating and n = rn after reheating. 

In order to obtain the activation energy, 
Equation 11 is rewritten as 

rn E 1 
in ~ = -- 1.052 In [-- ln(1 -- x)l 

n R T  n 

+ constant. (13) 

Thus the plot of In a against 1/T, where T is the 
temperature at which the crystal volume fraction 
reaches a specific value, gives a straight line and 
the slope gives the value of  1.052(m/n)E. This 
plot is very similar to the so-called Ozawa plot 
[2] which was derived for chemical reactions, so, 
we may call this a modified Ozawa-type plot. The 
activation energy can be obtained when the ratio 
rn/n is known. Since it is known that the volume 
fraction of  crystals at the peak temperature, To, 
in DSC or DTA curves is almost the same irrespec- 
tive of  ~ [14], this equation should apply for the 
peak temperature. 

The rate o f  increase of  x reaches its maximum 
at a temperature To. Solving Equation 12 for 
d(dx/dt) /dt  = 0, the following equation is derived; 

In = -- 1.052rn R--~o + constant. 

(14) 

m = l  

This is very similar to the so-called Kissinger 
equation [1] when n = rn = 1, so we call this a 
modified Kissinger-type equation. Usually, the 
change of  lnT0 2 with a is negligibly small com- 
pared with the change of  In a n, and, therefore, 
the modified Kissinger-type Equation 14 is 
essentially the same as the modified Ozawa-type 
Equation 13. 

3. Experimental procedures 
Glass of  the composition Li20"2Si02 (mole ratio) 
was used. The mechanism and kinetics of  crystal- 
lization of  this glass are already well known, 
and the rate of crystal nucleation reaches its 
maximum at about 460~ [20, 21]. The DSC 
measurements were made with Rigaku Denki 
thermal analysis apparatus which has a platinum 
sample holder of  4 mm inner diameter and 2 mm 
depth. Bulk glass, instead of powder, was used to 
avoid the effects of  particle radius distribution. 
To fill the sample holder with glass, a glass melt 
of 90mg was poured into it, remelted in an 
electric furnace at 1400~ for 20rain, and 
allowed to cool in air. Some of  the samples were 
heated at 462~ for 46h  in order to form a 
large number of  nuclei. It was ascertained by 
X-ray diffraction that no crystalline peaks were 
detected after the nucleation treatment. Alumina 
powder was used as a reference material and the 
heating rates used were 0.25, 0.5, 1 and 2~ 
min -1 . When the heating rate was higher than 
2~  rain -1, the specimen temperature increased 
more rapidly than the settled heating rate due to 
the latent heat of  crystallization. 

4. Analysis of experimental results 
The volume fraction, x, of crystal was obtained 
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Figure2 Variation of ln[-- ln(1--x)]  with natural 
logarithm of heating rate. ca: Quenched glass; 600 ~ C. 
o: Reheated glass; 560 ~ C. 

as a function of  temperature from the area under 
DSC curve as described previously [12]. 

Fig. 2 shows the relation between In [--ln(1 - 
x)] and ln a for quenched glass at 600~ and 
reheated glass at 560 ~ C. According to Equation 
11, the slope of  these lines give the n-value, and 
it was found that n = 4.3 for the quenched glass 
and n = 3.1 for the reheated glass. Allowing for 
experimental  error, these values are close to 4 
and 3, respectively. This indicates that m = 3, 
that is the crystal particles grow three-dimen- 
sionally. Fig. 3 shows the variation o f l n [ - - l n ( 1  --  
x)] with the reciprocal temperature,  as examples, 
of  quenched and reheated glasses for a = 0 .5~ 
min -1. According to Equation 11, the slopes 
of  these straight lines should give the activation 
energy for crystal growth. The activation energies 
thus obtained are shown in Table 1. 

Fig. 4 shows the relation between In a and the 
reciprocal temperature at which the volume frac- 

1 0 0 0 / T  ( K - 1 )  

Figure3 Variation of ln[-- ln(1--x)]  with reciprocal 
temperature for heating rate of 0.5 K min -1 . D: Quenched 
glass; o: Reheated glass. 

t ion of  crystal reaches 0.3 and 0.7. According to 
Equation 13, this plot should give the (m/n)E, 
namely, (3/4)E for quenched glasses and E for 
reheated glasses. Fig. 5 shows the relation between 
lna and 1~To, where To is the peak temperature 
in DSC curve. Since the volume fraction of  crystal 
at To is the same irrespective of  a ,  this plot should 
give the same information as Fig. 4. The activation 
energies thus obtained are shown in Table II. 

5. Discussion 
The crystallization kinetics and mechanism of  
gi20"2SiO~ glass are already well known, and 
the activation energy for crystal growth in this 
glass is equal to that for viscous flow. The 
viscosity, r?(poise), of  this glass is expressed 

by the Fulcher equation [22]: 
3.37 x 103 

logr? = --  1.44 + (15) 
T - -  460 

TABLE I Activation energy for crystal growth, E, obtained from the plot of ln[--ln(1 --x)] against 1/T and the 
activation energy for viscous flow, Er/, in the temperature region where exothermic peaks are found 

o~( ~ C rain -1 ) 

0.25 0.5 1.0 2.0 

Quenched glass 
E (kcal tool- ~ ) 92 91 84 
Er/(kcal mol -a ) 73 69 66 

(570-595 ~ C) (585-615 ~ C) (605-635" C) 
Reheated glass 
E(kcal mol -t ) 110 97 96 73 
Er/(kcal mol -~ ) 79 77 75 73 

(540-560 ~ C) (545-575 ~ C) (560-585 ~ C) (565-600 ~ C) 
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Figure 4 Modified Ozawa-type plot. z: Quenched glass, 
o : Reheated glass. 

The activation energy for viscous flow, E~, can 
be calculated as a function of  temperature. The 
calculated En in the corresponding temperature 
ranges of exothermic peaks in the DSC curves 
are shown in Tables I and II together with those 
for crystal growth, E, obtained from DSC curves. 

It is seen that the activation energy, E, obtained 
from the modified Ozawa-type plot, the plot of  
lnc~ against 1/T, are very close to E~ as shown in 
Table 1I, indicating the validity of  the Equation 
13. However, those obtained from the plot of  
ln [-- ln(1- -  x)] against 1/T in Fig. 3 are much 
higher than corresponding E~ as shown in Table 
I. The reason of this discrepancy is not clear. 
The left hand side of Equation 11 is a function of  
only x. ttowever, the correct function may not be 
In(1 - -x ) ,  in other words, the correction factor in 
Equation 8 may not be (1 - -x) .  Moreover, it is 

1t  ' , 
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v 

c~ 

I 
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Figure 5 Relation between natural logarithm of heating 
rate and reciprocal of peak temperature in DSC curve. 
~: Quenched glass, o: Reheated glass. 

not adequate to obtain the activation energy for 
crystal growth from a single DSC curve, and the 
energy should be obtained from several DSC 
curves of  different heating rates by using the 
modified Ozawa-type plot or modified Kissinger- 
type plot. 

So far, a number of  authors have examined the 
crystallization kinetics of  amorphous materials, 
such as oxide glasses [5 -6 ,  2 3 - 2 5 ] ,  chalcogenide 
glasses [26-29]  and amorphous metals [3, 7, 
30 -33 ]  by thermal analysis. Many of  them used 
the so-called Kissinger plot or Ozawa plot without 
considering the crystallization mechanism 
thoroughly. Therefore, the physical meaning of  
the activation energies thus obtained are some- 
times obscure and lead to misunderstandings. 
Even with the same glass, the crystallization 

TABLE II Activation energy for crystal growth, E, obtained from the modified Ozawa-type plot and the activation 
energy for viscous flow, Erp in the temperature region where exothermic peaks are found 

Volume fraction (m/n )E E E~ 
(kcal tool -1 ) (kcal mo1-1 ) (kcal tool -1 ) 

Quenched glass (m/n = �88 
0.3 53 71 
0.7 52 69 
peak temperature 53 71 
Reheated glass (m/n = 1) 
0.3 80 80 
0.7 78 78 
peak temperature 78 78 

69 
(580-630 ~ C) 

76(540-590 ~ C) 

295 



mechanism changes with the sample size as 
reported previously [13, 25] and with the thermal 
history as is found in the present study, and, 
therefore, the apparent activation energies 
obtained from the so-called Kissinger plots of 
Ozawa plots do not agree in different cases. 

Recently, some authors [3-10] d,.~veloped a 
c o n v e n i e n t  m e t h o d  for  ob t a in ing  t he  ac t iva t ion  

energy  for  c rys ta l l iza t ion ,  s ta r t ing  f r o m  the  

J o h n s o n - M e h l - A v r a m i  e q u a t i o n  w h i c h  was 

der ived for  i s o t h e r m a l  c rys ta l l iza t ion .  A l t h o u g h  

the i r  m e t h o d s  seem to give r easonab le  ac t i va t i on  

energies  in some  cases, t h e y  mus t  be res t r i c ted  

to  t he  case o f  m/n = 1. 

The E q u a t i o n  11 in the  p re sen t  s t u d y  was 

der ived for  n o n - i s o t h e r m a l  c o n d i t i o n s  and  a 

more  exact  a p p r o x i m a t i o n  was m a d e  b y  using 

the  Doy le ' s  p - func t i on .  It  was f o u n d  tha t ,  in o rder  

to o b t a i n  t he  ac t i va t i on  energy  for  crys ta l  g r ow t h ,  

t he  c rys ta l l i za t ion  m e c h a n i s m  and  especial ly  t he  

ra t io  o f  m/n shou ld  be  k n o w n ,  a n d  in th is  respect ,  

t h e  m o d i f i e d  Ozawa- type  plot  was very useful  

a n d  conven ien t .  

6. Summary 
The equation correlating the thermal analysis 
curve with heating rate and the activation energy 
for crystal growth was derived more precisely 
than previously. The validity of this equation 
was tested by applying it to the crystallization 
of Li20"2SiO2 glass. The crystallization mech- 
anism should be known in order to obtain a 
meaningful activation energy and it is very useful 
and convenient to use the modified Ozawa-type 
plot. 
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